Concrete 3D Printing with Engineered Cementitious Composites
       
     
2019-04-29 14.41.52.jpg
       
     
2019-08-08 10.32.06.jpg
       
     
2019-09-25 15.43.10.jpg
       
     
2019-11-26 15.33.10_e.jpg
       
     
2019-12-02 11.36.08.jpg
       
     
column_3up.jpg
       
     
column_setup_in use_North_Camera_0121.png
       
     
diagrid_two.jpg
       
     
IMG_2537.jpg
       
     
IMG_2810 clean.jpg
       
     
IMG_7004.jpg
       
     
IMG_7011.jpg
       
     
Concrete 3D Printing with Engineered Cementitious Composites
       
     
Concrete 3D Printing with Engineered Cementitious Composites

in collaboration with Wes McGee and Victor C. Li

2017-present

Additive manufacturing (AM), more commonly referred to as 3D printing, has attracted significant commercial interest due to its potential to reduce time, labor, and material use, while improving safety and overall building performance through computational optimization. The most promising application for the construction industry centers on concrete, where a significant portion of the construction cost is attributed to formwork production, which in the case of complex surface geometries or topologies can often be cost prohibitive. 3D printing concrete holds the promise of partially or completely eliminating the need for molds. Simultaneously, the design of advanced materials such as engineered cementitious composites (ECC), can be calibrated to optimize performance requirements of strength and ductility while reducing environmental impacts through a reduction in cement use. This research focuses on the development of novel approaches for concrete 3DP with ECC to rethink the design and fabrication of building envelope systems and building components. The prototypes produced include a series of columns and panels with complex geometries aided by bead shaping as well as variable layer thickness control.

Through an integrated approach to matrix/reinforcement tuning, process control, tooling and extrusion bead shaping, and computationally driven fabrication systems, the project explores the design and material constraints of 3DP ECC at full-scale.

Post-doc research fellows

Yi Bao, Duo Zhang, Kequan Yu, He Zhu

Lab Support

Asa Peller, Carlos Pompeo, Rachel Henry, Jacob Pyles

This work generously supported through the Prototyping Tomorrow Grant Initiative from Taubman College of Architecture and Urban Planning, University of Michigan, as well as an AIA Upjohn Research Grant Initiative.

2019-04-29 14.41.52.jpg
       
     
2019-08-08 10.32.06.jpg
       
     
2019-09-25 15.43.10.jpg
       
     
2019-11-26 15.33.10_e.jpg
       
     
2019-12-02 11.36.08.jpg
       
     
column_3up.jpg
       
     
column_setup_in use_North_Camera_0121.png
       
     
diagrid_two.jpg
       
     
IMG_2537.jpg
       
     
IMG_2810 clean.jpg
       
     
IMG_7004.jpg
       
     
IMG_7011.jpg